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1 Introduction

Measurement error models commonly begin with an underlying model where one or
more of the independent variables are measured with error. The distinguishing feature
of a measurement error problem is that we cannot observe those variables which are
measured with error directly. The goal of measurement error modeling is to obtain
understanding from the model. Attainment of this goal requires careful analysis.

This selection problem is from statistical consulting. When I (Xun Lin) was a statis-
tical consultant in the summer of 1996, one of my clients came up with a problem which
can be simplified as follows.

Suppose we have k treatments II;,7 = 1,...,k and n observations from each treat-
ment. For each treatment II;,z = 1,...,k and each observation j = 1,...,n, we have
the following model:

Y = Boi + fuXi; + €5, Wi = Xi; + Ui, (1)

where {(X;,Uij,€;),1 < j < n} are independently but not necessarily identically
distributed random vectors with means (0,0,0) and variances (0zzi,Cuui, Oeei). For
t=1,...,kand j = 1,...,n, (Xi;,Uy,€;) are independent to each other. But Xj;
cannot be observed, instead we can only observe (W;;,Y;;). We assume that for each 7,
Ouwi 18 known and o,4; > 0.

A treatment II; is said to be the best if the associated slope parameter fBy; is the
largest among the k slope parameters, otherwise the treatment is said to be nonbest.
The goal of this selection problem is to select the best treatment from the k treatments.

Let Q = {B1 = (B11, P12,---,B1)|Bi1 € R,1 = 1,...,k} be the parameter space. Let
a = (ay,...,ax) be an action, where a; = 0,1, ¢ = 1,...,k. When action a is taken,
a; = 1 means that treatment II; is selected as the best treatment; otherwise a; = 0 and II;
is excluded as the nonbest. Fori=1,...,k, let W; = (Wjy,..., W), Y: = (Yi, ..., Yin),
X=(X1,...,Xx),and Y = (¥1,...,Yk). Let x be the sample space generated by (W,Y).

Since the true order of By, ..., Bk is unknown, we denote Bijy) < By < ... < By For
simplicity, we assume that Bz — Bik—1y = 26 > 0.

A selection rule d(w,y) = (di(w,y),...,di(w,y)) is a mapping defined on x, where
di(w,y) is the probability that given W = w and Y =y, II; is selected as the best. Also,

5 di(w,y) =1, for all (w,y) € x.

We consider the following loss function:

L(By,a) = { 1, 1if a nonbest treatment is selected,
2710, if the best treatment is selected.
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2 Formulation of the Selection Procedure

The population moments of (W;;,Y;;) satisfy

(:uwiaﬂyi) = (07 IBOi)a (3)

and

(waia Owyiy nyi) = (o'rzi + Ouuiy ﬁlio'xxia ﬁlizazxi + Ueei)- (4)

The sample means (W;,Y;) and the sample covariates (Syuwi, Swyis Syyi ), Where, for ex-
ample,

I
I/Vi = ; Z VViJ" (5)
7=1
1 & _ _
Suyi = —= D_(Wis = Wi)(¥;; — Yi), (6)
=1

will be the bases of our selection procedure.

We use estimators of the unknown parameters by replacing the unknown population
moments with their sample estimators. For the quantities defined above to be proper
estimators, o,,; must be positive. We have 074 = Suwi — Ouui When Sywi — Cuui 1S

positive, otherwise we set o4; = Sﬁ,—Sﬁ,yi. We also have

,BA o (Swwi - Uuui)_lswyiy if Swwi — Oyui > 07 (7)
YT SaviSuvie otherwise.

Since we take n samples from each treatment, our selection procedure will be d,(w,y) =
(din(w,¥), don(W, ), ..., dka(w,y)), where

din(w,y) = 1, if By is the largest among the k slope estimates, (8)
s 0, otherwise,

when W =wand Y = y are observed.




3 Performance of the Selection Procedures

In this section we study the performance of the selection procedures. We first analyze
the expected risk of the proposed procedure.

Definition 1. A sequence of selection procedures {d,(w,y)}5%; is said to be asymp-
O(en),

totically optimal of order e, if EW X)L(@, dn(w,y)) =
positive numbers such that lim, ., e, = 0.

where e, is a sequence of

Denote P, to be the probability measure generated by the random observations
(W,Y), and for each (w,y) € x, let

" = {1]fu = lfgagiﬂlg Biwpy, 1= 1,...,k}, (9)
and
by = {ilﬂAu = {gjaéc,@;j, i=1,...,k}. (10)

Then, the expected risk of the proposed selection procedure is

E™YL(B, dn(x,7)) (11)
k k
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k .
+2k Z Pn{Swwi — Oyui S 'O'-';ﬂ'}

i=1

From above we observe that it suffices to analyze the convergence rates of the fol-
lowings two sequences:

Ozxi > Ozzi
Pn{Swwi — Oyug S _2_}7 Pn{'ﬁli - /Bh'[ Z 57 S‘wwi — Oyui > T} (12)

We analyze the rate of convergence under the following conditions.

3.1 When The a-th Moment Exists (« > 2)

In this subsection we suppose that the a-th (a > 2) moments of (X;;, U;;, €;;) exist, that
is,

ElXijia < 00, ElUiJ‘rx < 0, Eléijla < co. (13)
 We will show that the expected risk of the proposed selection procedure converges to 0
at the rate of o(n=(@/2-1),

We introduce some useful lemmas. The first lemma is well known, a similar result can
be found in Baum and Katz (1965).

Lemma 1. Let Xj,..., X, be independent random variables with mean 0. Suppose for
a fixed number a > 1, E|X;|* < 0o, for : = 1,...,n, then for any ¢ > 0,




P{>" Xi/n| > €} = o(n~(>V). (14)

As a consequence of Lemma 1, we have

Lemma 2. Let Xj,..., X, be independent random variables, with mean EX; = u and
variance VarX; = 0%, fori =1,...,n. Alsolet X = 2 ¥ X; and S2 = L3 (X; — X)2.
Suppose for 2 =1,...,n and a fixed number o > 2, E|X;|* < oo, then for any ¢ > 0,

P{IS? = 0% 2 ¢} = o(n(@/-1), (15)
Proof.
PUSI=o'l 2} = P X X! - 25X =2 ) (16)
< zxt%m +0%) 2 5)
X2 ny? + o®
IS L 2}
—1le
= PH-Z( — (W +a%)) 2
2 _ > E <2
HP{RE -7 > £ - Lo%)
1 €
= PSS - (40N 2
+P{X? -2 2 )
= I1+I2, (17)
fornlarge enough, that is, when n > max (2, [#- 2]+ 1), we have 2zle > fand £—-20% >
. From Lemma 1, we have
1 €
= P{=2 (X - (W + %) 2 7} (18)
= o(n7o/?1) (19)




€
= PX -] 2 5}

- P{I(X+u)(X Wiz and (X+p) > u+1)
5 €
+P{X +u)(X —p)l 2 7 and (X +p) < (2 +1)}
< P{(X=p)>1}+ P{a2p + DI(X —p)| 2 ¢}
= o(n'(" 1)).
From Lemma 2, we can see that
P{Suwi = Oui < a;ﬂ} = P{Suuwi — Ouwwi < —Jgﬁ}

= 0(77,_(0‘/2—1))_

Moreover,
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Forany:=1,...,k, {W,,Y;,j =1,...,n} are independent random variables with
E(W,;Yi;) = f1i0z4:. By Holder’s inequality,

7

(20)

(22)

Trzi }

2
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E|W;Y;|*/* < \/E|Wyl*E|Y;] < oo, (23)

therefore, we have

1 & n—1 oz
Jl = Pn“; Z(I/I/ZJYU - ﬂlio'm:i” 2 ) } (24)
7=1 n 6
= o(n{=2/2"1), (25)
Since
I/T/vi _i - ﬂlz «12 (26)
= Wi(Y; - puWi)
= VVi(,BDi + € + lgle'z)
= ﬂOzm + ezﬁ/i + ﬂlzX U + ,Bh

we observe that

J2 = Po{|BoiW; + &W; + 1. XiUs + U? — '71;511'0%1' >0 ! ngi} (27)
= n—1 0z
< Po{lfaWil 2 11 24}
5 Ozzi
+P{laW, z )
+Pof |81 X0 > ) 1
+P.{|BuU} - _ﬁlio'uuz'l > z - 50;:}
S P{lBaWi] 2 Z—=572)
+Paflal 2 \/ — 8% + PIW 2P )
24 24
P Bkl 2 gt "”’}+P{MﬁIU|> — 5722y
A2 1 Ozi
RN ;aw-)l > Doy,




Then by Lemma 1, we have

Pﬂ.{!/@O‘t | = 24 } {0, if 1302- = 0’
= o(n_("‘_l)),
Prllal 2 |8} = ofn™(e)
n1l€il = 24 =o\n I
PV 2 |55 = o),

Po{|\/BuXif > |-

1 0-1.‘.2'1

=) = ofn™"),

= -1 aa:m (-
Pn{llelez| Z 24 } —O( ( 1))’
- 1 n—1 _ 0z
(72 _ = A > Tzt
P18 0F - ~ow)] 2 "5
_ -1 0pei 1
< 772 n R W
= Pn{lﬁle1 | jell 24 ﬁho-um}
7 -1 om
= P {l BleI > ,311, uuz}

= o(n'(‘" 1)),
JB—'P{I 18112

= o(n~(@/2-1),

Hence, by combining the above arguments, we have the following theorem.

-1 Orzi

5 )

Blz 0:1:1:1 + Uuuz)l
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Theorem 1. The selection procedure d.(w,y), defined in (8), is asymptotically optimal
)

with convergence rate of order o(n~(®/2-1)) under condition (13). That is,

E™VL(B,du(w,y)) = o(n=/*71). (35)

3.2 When The Moment Generating Function Exists

In this subsection we suppose that the moment generating functions of {XfJ,UfJ, i
exist in a neighbourhood of the origin, that is, for - T <t < T,
Ee¥li < 0o, EeYi < oo, Ee'% < co. (36)

where T' is a positive constant.
- We first introduce the following lemma, which can be found in Petrov (1995).

Lemma 3. Let {Xj,..., X, } be independent random variables with mean EX; = 0,7 =
1,...,n. Suppose there exist positive constants g1,..., g, and T such that

Eeti < s/ (1=1,...,n) (37)
for - T <t<T. Let G, =37 ¢, then
=(=%/2Gn) {0 <z < G,oT
Xi| > =2 = Und, 38
'f_/—‘; 122) { (=12 i g > G,T. (38)

The following lemma clarifies the probabilistic meaning of the conditions of Lemma 3.

Lemma 4. Let X be a random variable with mean EX = 0. The following two
assertions are equivalent:

(I) There exist positive constants ¢ and H such that
EetX < 9t/ for —H <t < H, (39)

(IT) There exists a positive constant T such that

10




EeX < for -T <t <T. (40)

Proof. It is clear that (I) implies (II). We now prove that (II) also implies (I). If (II) is
fulfilled, then the random variable X has the moments of all orders, and the following
relation holds:

log Ee'X = -3-02752 + o(t?) (41)

as t — 0, where ¢? = EX?. For any constant g > o2, the inequalities log Ee!* < gt?/2
and EetX < e9°/2 hold for all sufficiently small ¢, that is, (I) is true. This completes the
proof of Lemma 4. As we can see in the proof, we can always set g = 202,

We further assume that the 4-th moments of {X;;, U;, €;;} are bounded, that is, there
exists a positive constant C such that

EX$<C,  EUA<C,  Eei<C. (42)

We can see from (42) that EW}}, EY; and E(W;;Y;;)? are all bounded.

177

We analyze Pr{Suywi — Ouui < 255} first.

Pn{Swwi = Oyui S U;Ii} (43)
S Pn{lswwi - wail Z __O-Jé'l‘i}
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-— n nj:.l ij wwr] 2 n 2
TR > £ - 2o7)
" 1T 2 n
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> m
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+P{W 2 |[5)
= K, + K, (44)

for n large enough, that is, when n > max (2, [4~‘5’—2] +1), we have 2=2

<. Sincefor j =1,...,n, E(Wj; — 0yui) =0 and for —=T/2<t<T
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> Sand
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2

Ee™i < BeltXa+Ui)’l < p(2HXE 20 = F(2HX5) E(2H1V) < oo,

By Lemma 3 and Lemma 4, we have

n

1
I(]_ = P{I—TZ Z(mzj - wai)' 2

i=1

}

B o

e_(n252/32Gn), if € S 2TG'n/n7
e~ (Te/8)n if e > 2TG,/n,

where G, is twice the sum of the n variances of (I/VfJ — Owwi), J = 1,...,n.

(EWS
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j =1,...,n) are bounded, G, = O(n). Therefore,

n

1
K]_ = P{';; Z(sz - a'wwi)l Z

j=1

}

=1

6_(n252/32Gn), if € _<_ 2TGn/n)
e_(Te/B)n’ ife> 2TGn/n7
= O(e-ckln%

where cJ, is a positive constant. Similarly, for =T <t < T,

EetWi < EeltWil < EeldWi+1) o« o

K, = P{Wi 2 [3)
= O(e™km),

where cj, is also a positive constant.

Next we consider Pn{|31,~ — Bil 2 8, Swwi — Ouui > F&}. We have

Pn{]/sfli - ﬂlil 2 6, Swwi — Oyui > %}

12
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AN

1 n Oxxi
P{I_ZVV‘J i n_lﬂliaxm’|26 6 }

i=1

T 1 zT1
+Pn{|————m-x-— AW = B 2 67)
Trzi
+P {I ;8112 lﬂli(azzi+0'uui)|_>_6 6 }
= L1 +L2+L3

For any ¢ = 1,...,k, {W,;;Y;;,7 = 1,...,n} are independently but not necessarily
identically distributed random variables. By Cauchy-Schwarz’s inequality, we have, for

—T/2 <t < T/2,

(WZi+¥) 2
EetWiiYii < EeltWisYisl < EemﬁLL < Ee]tIWqultl i < 00.

Besides, for each ¢ and j, the variance of W;Y;; is bounded, therefore,

n

=P, {I; > (WY — Brioesi)| =

=1

n—1 0.
6 festerd
n 6 }

= O(e_czln),

where ¢} is a positive constant. Next we analyze Ly and Ls. Similarly,

-1 O'xxi

L2 < P {lﬁOz n }

-1 U:m -1 o'm:z
> 1/ W > \/

& -1 Tzt n—1 Tzt
+Pn{|\/ﬂh-x,-|z 6 }+P{l\/ﬁ1,U|> —~5==)

24
- 1
+Pn{i1317,(U¢2 - Eauui)l 2
= O(e™L™),

1 Ogzi

n 624}

and

n—1 Trri
n d 6 }

L3 - P {l 18112 ,611 U:z::z:z + O"uuz)l 2
= O(e™h"),
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where ¢, and c}, are positive constants. Hence, by the above argument, if we set
¢* = min(ck,, Ck,, €L, s €L, €L, )» then ¢* > 0. We have the following theorem.

Theorem 2. The selection procedure d,(w,y), defined in (8), is asymptotically optimal
with convergence rate of order O(e™¢"") under conditions (36) and (42). That is,

EWVL(B,dn(w,y)) = O(e™™). (58)

We consider two special situations next.
Two special situations.

1. {(Xi;,Uij,€5),1 < 7 < n} are normally distributed. In this case, {(Xi;, Uij, €:;)}
are i.i.d. N3((0,0,0), diag(0ssi, Cuuis Teei)). Since (X /0ugi, UL/ Ouui, €/ 0cei) are x* dis-
tributed and the moment generating functions of them exist in a neighbourhood of 0,

and the 4-th moments of {(X;;, U;;, €;;)} are also bounded, by Theorem 2, we have that,
in the normal case, the selection procedure d,(w,y), defined in (8), is asymptotically

optimal with the rate of convergence of order O(e="").

2. {(Xij,Uij,€i5),1 <3 < n} are bounded. Then conditions (36) and (42) always hold
and therefore, the selection procedure d,(w,y) is asymptotically optimal with conver-
gence rate of order O(e™<"").

4 Simulations

We carried out a simulation study to investigate the preformance of the selection proce-
dure d,. The expected risk E(W’}—’)L(@, dn(w,y)) is used as measure of the performance
of the selection rule. For any observations (W, Y), let

D(W,Y) = { 1,  if we make a wrong selection, (59)

0, if we make a correct selection.

Then, by the law of large numbers, the sample mean of D(W,Y), based on our
observations, can be used as an estimator of the expected risk E(W’—)L(@, dn(w,y)).

The simulation scheme is described as follows:

1. For each 7 = 1,...,n and each i=1, 2 and 3, we generated independent random
observations (Xij, Uij, €;) from multivariate normal N3((0,0,0)7, diag(czzi; Cuuis Teei))-

2. Let Wi; = X;; + Usj and Y5 = Boi + f1:Xi; + €ij-

14




3. Based on (W;;,Yi;), we obtained the estimators of fy;, then made the selection and
computed D(W,Y).

4. Step 1, 2 and 3 were repeated 4000 times. The average of D(W,Y) based on the
4000 repetitions, which is denoted by D,, is used as an estimator of the expected risk
E(W’X)L(g,dn(w,}_')).

The results are listed for the case where

Ozpl = Ogz2 = Ogz3 = 1,
Ouul = Oy = Oyu3 = 1,
Teel = Tee2 = Tee3 = 0257
Bo1 = Boz = Boz = 0,
,811 =0,812=1,03=2.

and

n =5,10, 15,20, 30,40, 50, 100.

From the results of the simulation (see the last page), we can observe that the values
of D, decrease quite rapidly as n increases, for n < 100. This supports Theorem 2 that
the rate of convergence is of order o(e™*"").

5 Acknowledgement

The authors are very grateful to Professor Zhengyan Lin of Hangzhou University, Hangzhou,
China, for helpful comments and discussion.




References

Baum, L. E. and Katz, M. (1965). Convergence Rates in the Law of Large Numbers,
Transactions of the Amer. Math. Society, Vol. 120, 1, 108-123.

Bhattacharya, R. N. and Ghosh J. K. (1978). On the validity of the formal Edgeworth
expansion. Ann. Statist. 6, 434-451.

Bhattacharya, R. N. and Ghosh J. K. (1989). On moment conditions for valid formal
Edgeworth expansions. In: Multivariate Statistics and Probability: Essays in Memory

of P.R. Krishnaiah. (C.R. Rao and M.M. Rao, eds.), Academic, New York, 68-79.

Carroll R. J., Ruppert D. and Stefanski L. A. (1995). Measurement error in onlinear
models. Chapman and Hill, New York.

Casella, G. and Berger, R. (1990). Statistical Inference. Duxbury Press, Belmont,
California.

Fuller, W. A. (1987). Measurement error models. John Wiley, New York.

Gupta, S. S. and Liang, T. (1996). Selecting good exponential populations compared
with a control: a nonparametric empirical Bayes approach. Department of Statistics,
Purdue University, Technical Report #96-18C.

Gupta S. S. and Liang T. (1996). On empirical Bayes simultaneous selection procedures
for comparing normal populations with a standard. Department of Statistics, Purdue
University, Technical Report #96-25C.

Gupta, S. S. and Panchapakesan S. (1996). Design of experiments with selection and
ranking goals. Handbook of Statistics. (S. Ghosh and C. R. Rao, eds.), Elsevier Science
B. V., Vol. 13, 555-584.

Hall, P. (1990). On the relative performance of bootstrap and Edgeworth approximations
of a distribution function. J. Muti. Anal. 35, 108-120.

Hall, P. (1991). Edgeworth expansions for nonparametric density estimators with appli-
cations. Statistics 22, 215-232.

Hall, P. (1992). The Bootstrap and Edgeworth expansion. Springer-Verlag, New York.

Petrov, V. V. (1995). Limit Theorems of Probability Theory - Sequences of Independent
Random Variables. Oxford Studies in Probability Series, Clarendon Press, Oxford.

Weber, N. C. (1984). On resampling techniques for regression models. Statist. Probab.
Lett. 2, 275-278.

16




Dn
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n D,
5 0.250
10 0.090
15 0.030
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30 0.001
40 0.001
50 0.000
100 0.000

Simulation
2‘0 46 66 86 160
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